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CARBON DIOXIDE CAPTURE FROM FOSSIL FUEL POWER PLANTS USING 

DOLOMITE 

Drupatie Latchman 

ABSTRACT 

 

The main objective of this research is to develop a simple and cost effective 

separation method that captures CO2 from power plant flue gas, as a pure stream that can 

be stored using regenerable dolomite (calcium magnesium carbonate) as the sorbent. The 

developed dolomite sorbent was evaluated for CO2 capture capacity using muti-cycle 

tests of cyclical carbonation/calcination experiments in the thermogravimetric analyzer 

(TGA) model SDT 600. The variables controlled in the experiment were weight of 

calcium oxide and sintering time of the sample. The dolomite materials investigated were 

from two sources Alfa Aesar and Specialty Minerals. The prepared sorbent, after 

conditioning, is in the oxide form and can adsorb CO2 to form the carbonate and be 

regenerated back to the oxide.  

The results showed that the dolomite sorbent developed can be used for reversible 

CO2 capture. The data from 8 multi-cycle TGA experiments show that the reversible 

capacity reduced in the first few cycles; however it stabilized to an average value of 34% 

after an average of 10 cycles and an average conditioning time of 15 hours. Data from 

two multi-cycle TGA experiments show that the dolomite sorbent is capable of an 
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average stabilized conversion of 65% in an average of 13 cycles at a conditioning time of 

87 hours.   
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CHAPTER 1. INTRODUCTION 

 

1.1 Carbon Dioxide Emissions 

Carbon dioxide (CO2) is a clear colorless gas that is present everywhere in the 

atmosphere. It is one of the most important gases essential to life because plants use CO2 

to produce food and in the process oxygen is released.  However, CO2 has been 

implicated as major cause of climate change because it is a known greenhouse gas and its 

atmospheric concentration has significantly increased over the last four decades (Figure 

1).  Most of this increase has been attributed to global industrialization. The United States 

and China alone account for more than 40% of the world’s CO2 emissions (Figure 2) [1]. 

Climate change is expected to have profound effects on the environment and on human 

socioeconomic systems. This has prompted the United States Environmental Protection 

Agency (USEPA), for example, to classify CO2 as a pollutant in 2009, which would 

trigger measures to reduce the quantity released into the atmosphere [2]. 

There are many approaches to reducing CO2 emissions from industrial sources, 

particularly from power generation facilities. These include switching to alternative fuels 

(low carbon or carbon-free fuels) sources and improving process efficiency. However, 

many trends indicate that fossil fuels, especially coal and natural gas, will continue to 

serve as the predominant energy source for decades and therefore carbon capture and 

storage is an important approach currently being investigated. There are several 
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technologies available to capture CO2, but they are currently costly to install and operate. 

They can be installed in pre- or post-combustion processes. All capture technologies are 

based on trapping the gas in a suitable medium, solid sorbent or liquid absorber. CO2 

emissions can to be addressed via: capture and storage of future man-made carbon 

dioxide emission, reducing the existing quantities of carbon dioxide from the atmosphere, 

and restoring the carbon- cycle to pre-industrial era.  

 

Figure 1. Carbon Dioxide Concentration [3] 
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Capture and storage technology of future man-made carbon dioxide emission has 

made some advancement; however, no single technology exists today that addresses the 

pollution problem.  

 

Figure 2. World Carbon Dioxide Levels [4] 

 

According to the Intergovernmental Panel on Climate Change (IPCC) Special 

Report on CO2 , the following is a profile of CO2 emissions by process or industrial 

activity of worldwide large stationary CO2 sources with emissions of more than 0.1 

million tons of CO2 (MtCO2) per year [5]. 
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Table 1. Global CO2 sources (taken from  [5]). 

Process  Number of sources  Emissions  
    (MtCO2 per yr)  
Fossil fuels      
    Power  4,942 10,539 
    Cement production Refineries  1,175  932  
    Iron and steel industry  269 646 
    Petrochemical industry  470 379 
    Oil and gas processing  Not available  50 
    Other sources  90 33 
Biomass      
    Bioethanol and bioenergy  303 91 
Total  7,887 1 ,466  

 

The above table shows that electricity production worldwide is the largest 

contributor to CO2 emissions.  It is clear that developing technologies to capture and store 

CO2 from these large point sources will have the biggest impact on CO2 emissions. Metz 

[5] also states that other options to control CO2 emissions are energy efficiency 

improvements and implementation, use of lower carbon fuels, nuclear power, renewable 

energy sources, enhancement to biological sinks, and reduction of other greenhouse 

gases.  

Currently, CO2 is used in many processes, but CO2 is often produced for use in 

these processes instead of using the existing CO2 supply in the atmosphere because of 

purity requirements. According to Edwards[6], CO2 is used in the manufacturing of 

products,   such as chemicals, fertilizers, carbonated beverages, food preservatives, fire 

extinguishers, and it is even injected into oil and petroleum wells to improve production 

and aid recovery. Edwards [6] goes on to state that the rate at which CO2 is consumed is 

less than the quantity currently emitted, therefore an impact will not be seen, but every 
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molecule of CO2 recycled and removed from the atmosphere, along with the elimination 

of new CO2 produced from fresh feedstock, will go a long way in helping to reduce CO2 

levels. 

Fossil fuel combustors are the major contributors of CO2 emitted into the 

atmosphere (Figure 3). Power plants are the largest subset of fossil fuel combustors that 

are CO2 polluters. Fossil fuel provides approximately 85% of the energy the world needs 

[7]. Steps can be taken to control CO2 levels by capture and storage of emissions, using 

alternative sources of energy and using energy efficiently. Lee et. al.[8], developed a CO2 

capture method using immobilized calcium oxide (CaO) on yttria and alumina substrates. 

The method showed with a 23 weight% sample the conversion was 75% and with a 55 

weight% sample the conversion was 62% over 13 and 10 cycles respectively. This 

research is a continuation of the Lee et. al.[8] research; however, dolomite according to 

Silaban et. al. [9] dolomite would have a higher capacity without increasing the cost.  
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Figure 3. Carbon Dioxide Emission Sources [4] 

 

1.2  Research Objectives and Scope 

The overall objective of this project was to develop an inexpensive and efficient 

sorbent to capture CO2 and the design a reactor that uses the sorbent to capture CO2 

emissions from power plants. The central hypothesis of the project was that dolomite 

would be a more efficient sorbent for the capture of CO2 than pure calcium carbonate in 

the given configuration because the magnesium carbonate decomposition in the dolomite 

would increase the surface area after sintering, which would increase the capacity to 

adsorb CO2. The rationale for this project is that the development of an effective sorbent 

for CO2 will allow scientists and engineers to design systems capable of capturing the gas 

and thereby contribute to the overall reduction of greenhouse gas emissions. The main 

focus of the research was the capture of CO2 emissions from power plants. However, the 

results of this project may be applicable for CO2 capture from other processes.  
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The overall research objective was accomplished through the following plan. The 

first objective was to develop a sorbent using a method developed by Lee et. al. [10] to 

impregnate dolomite unto a ceramic fabric to capture CO2. It involves impregnating a 

ceramic fabric (alumina or yttria) with pure calcium carbonate. However, dolomite was 

used in this work instead of calcium carbonate. It is hypothesized that the inert 

magnesium in dolomite increases the surface area of the material during sintering, and 

thus the capacity to adsorb more gas. This occurs because magnesium carbonate has a 

lower melting point than calcium carbonate and, when the sorbent is sintered during 

preparation, the magnesium particles decompose and leave pores in the sorbent so that 

the CO2 molecules can reach the internal calcium oxide particles and react with them, 

instead of just the surface calcium oxide particles. 

The second objective was to quantify the conversion, determine the regeneration 

time needed, and evaluate the cyclic performance of the sorbent. CO2 molecules from 

flue gas react with the calcium oxide in the sorbent to form calcium carbonate. Heat is 

then used in the regeneration process to drive the CO2 molecules from the sorbent leaving 

a pure stream of CO2 that can be captured and reused or stored.  
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CHAPTER 2. CARBON DIOXIDE CAPTURE TECHNOLOGIES 

 

The development of new and innovative technologies is critical in resolution of 

the carbon dioxide pollution problem.  Power plants have a huge role in curbing carbon 

dioxide emissions as they are the largest carbon dioxide emitters. The captured carbon 

can then be transported to an injection site for long-term storage in geologic formations 

for example. These technologies are currently being researched with some technologies 

in the early stages of research and development [11].   

There are several ways to capture CO2, but it must first be separated from other 

combustion gases [5]. The following are the three main capture technologies from power 

plants: 

1. Pre-combustion  

2. Post-combustion  

3. Oxyfuel combustion 

Pre-combustion systems developed to capture CO2 are designed for Integrated 

Gasification Combine Cycle (IGCC) units [5].  Due to the nature of this process, it is 

easiest to remove pollutants prior to combustion. The fossil fuel is reacted with steam and 

air /oxygen at very high temperatures to produce a gaseous fuel that can be combusted in 

the turbine. This gaseous mixture is “synthetic gas” or “syngas” consisting of carbon 

monoxide (CO), hydrogen (H2), methane (CH4), and water vapor (H2O). The CO can 
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then undergo a water-gas shift reaction, which will convert the CO to CO2 and H2. The 

CO2 is then captured in the reactor using carbon capture technology. Therefore, CO2, like 

sulfur dioxide (SO2) and other pollutants, is removed before the syngas is fired in the 

turbine, preventing these pollutants from being emitted into the atmosphere. The benefit 

of pre-combustion CO2 capture is the ability to manipulate the concentration and pressure 

of carbon dioxide prior to burning of the fuel. This leads to a reduction in the capture 

equipment size and cost.  

The syngas can then be treated to remove pollutants and contaminants, leaving a 

clean, efficient fuel. For IGCC plants water-gas shift reactions equipment would need to 

be installed, for existing and new units, to produce a CO2 stream that can be separated 

and captured.  Existing solvents and capture technology can effectively remove CO2 

because the high pressure syngas stream has high CO2 content [12]. 

Post-combustion CO2 capture system, on the other hand, removes CO2 after the 

combustion process. According to Metz et. al. [5], a liquid organic solvent such as 

monoethanolamine (MEA) would be used to capture the CO2 in the flue gas. This means 

of CO2 capture is more challenging as the concentration of CO2 is very low and there are 

other pollutants present in the flue gas, which makes separation very costly and difficult 

[11]. 

In the case of oxyfuel combustion systems, oxygen is used for combustion of the 

fossil fuel and it produces mostly water vapor and CO2 [5]. The high concentration of 

CO2 (greater than 80% by volume) can be captured after the water vapor is separated by 

cooling and compressing the flue gas and other pollutants are removed. This method of 

CO2 capture is very cost prohibitive as the equipment needed for air separation and the 
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production of oxygen is very expensive. Each of the three CO2 capture categories 

discussed above can utilize any of the three CO2 separation technologies or a mixture of 

CO2 separation technologies to attain an efficient capture system. The three CO2 

separation technologies are: solvents, membranes, and sorbents. However, chemical 

looping combustion, oxy-combustion, and cryogenic separation can also be used in the 

fight to reduce CO2 emissions and are briefly described. 

 

2.1 Solvents 

The process of solvent absorption uses the reversible nature of the chemicals to 

remove the CO2 from the flue gas stream either physically or chemically [13, 14]. The 

solvent can then be regenerated by changing the operating conditions, that is, the 

temperature or pressure in the system [14]. Both physical and chemical solvents can be 

used to capture CO2.  

Physical solvents remove the carbon dioxide selectively by absorbing the gas 

without any chemical interaction, usually organic liquids [11, 14]. Selexol and Rectisol, 

KS-2, and propylene carbonate are examples of physical solvents [15]. Here the CO2 

partial pressure is proportional to the capacity of the absorbing capability of the physical 

solvents according to Henry’s law [11, 14].  Researchers are working to improve physical 

solvents by finding different and better solvents, manipulating pressure, temperature and 

other conditions of both the flue gas and solvent stream, and improving the selectivity of 

the solvent to CO2. Physical solvents use less energy for regeneration, but, they work best 

at low temperatures [11].  
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Chemical solvents, on the other hand, facilitate a chemical reaction to strip or 

extract the carbon dioxide from the flue gas stream and are usually aqueous solutions [13, 

14]. MEA is example of a chemical solvent and is currently the most matured technology 

used to capture CO2 [15, 16].  Scholes et al., [12] also investigated the use of hot 

potassium carbonate solvent system. MEA and amine solvents have a high removal 

percentage, but they use a lot of energy to regenerate and also decrease the electric output 

of the unit by about 15 to 60 percent depending on the type of generating unit [13, 17]. 

Amine solvents degrade quickly and cannot be reused. They are also corrosive in nature, 

which affect the construction material of equipment [12].  

Applications of solvents for high pressure and high temperature are being 

researched as part of the DECARBit project [17]. Technological advancement to amine 

systems are currently being developed by Fluor, Mitsubishi Heavy Industries (MHI), and 

Cansolv Technologies [11]. Modifications and improvements to amine systems aim to 

reduce pressure drop, increase contacting, increase heat integration to reduce energy 

requirements, reduce corrosion, and improve regeneration procedures [11].  

Ammonia wet scrubbing can also be used as a solvent to capture CO2  and it is 

similar to amine systems, but has lower energy requirements, higher CO2  capture 

capacity, lack of degradation, is tolerant to oxygen in the flue gas, low cost, and potential 

for regeneration at high pressure [11, 18]. Yeh et al. [18] compared aqueous ammonia 

solution to MEA. The study showed that the energy required for regeneration using 

aqueous ammonia instead of amine could be reduced by approximately 62% [18]. 

However, ammonia has a higher volatility than MEA, which is one of the main concerns 

about this solvent, as the flue gas must be cooled to improve absorption [11]. Figueroa et 
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al., [11] also states that other technical issues that must be overcome to make this 

technology more attractive than using amine.  

Ionic liquids are liquids that are mostly made up of ions instead of molecules [11, 

19].  This solvent can dissolve gaseous CO2 and is not lost into the gas stream [19]. 

Therefore, the flue gas does not have to be cooled before the solvent can come into 

contact with the flue gas, however the absorption capability of CO2 needs improvement 

[11]. Olivier-Bourbigou et al., [20] discusses and reviews ionic liquids, their applications, 

and their properties in detail.  

 

2.2 Membranes 

Membranes are semi-permeable materials that selectively allow molecules to pass 

through them [21]. Membrane separation can be a combination of adsorption and 

absorption. Polymer-based membranes are showing promising results in the fight to 

lower the energy requirement and cost of carbon separation and capture. According to 

researchers at DOE’s Los Alamos National Laboratory (LANL), a polybenzimidazole 

(PBI) membrane has shown signs that it can be durable in coal fired power plants [11]. 

Researchers at the NETL in collaboration with the University of Notre Dame are working 

on a liquid membrane, which will selectively remove the CO2 molecules [11]. The 

membrane is made of an advanced polymer substrate and an ionic liquid [11].  

Another concept under development is the use of an inorganic membrane. 

Researchers are developing a micro-porous membrane to allow for the separation of CO2 

from the flue gas [11, 22]. This modification allows the strong interactions between the 

permeating CO2 molecules and the amine functional membrane pores [11]. While in the 
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New Mexico Institute of Mining and Technology, zeolite membranes are being 

developed. Zeolites are micro-porous structures of aluminosilicate minerals [11, 23].  

Enzyme based membranes are also being investigated. Carbonic anhydrase is an enzyme 

that is contained in a hollow fiber [11].  Demonstrations show 90% CO2 capture followed 

by regeneration at ambient conditions. Limitations include membrane boundary layers, 

pore wetting, surface fouling, loss of enzyme activity, long-term operation, and scale-up 

[24]. Ravanchi et al. [21] review membrane separation in great detail and lists the 

advantages and disadvantages of this technology. 

 

2.3 Sorbents 

Solid reactants can be used to react with CO2 to form stable compounds.  The 

reactant can also be regenerated to release the absorbed CO2 [11].These solid reactants 

range from metal oxides and carbonates such as calcium oxide, potassium carbonate, 

dolomite (CaMg(CO3)2), and other carbonate systems. The metal oxide will react with the 

CO2 to form a carbonate. While in the carbonate system, it will react with CO2 and water 

to form bicarbonate. The main disadvantage of mineral CO2 capture are the calcinations 

temperatures and slow reaction rate for lithium-containing sorbents, which shows the 

most promising sign for high temperature capture [25]. Of the many metal oxides that 

exist or can be modified, each has its drawbacks. For example, metal oxides such as 

sodium and potassium work best at low temperatures, which requires the flue gas be 

cooled significantly prior to CO2 separation; or for magnesium oxide the temperature 

range is 350 to 500°C, which makes it a suitable material for conventional post-

combustion capture; while calcium based oxides work best in temperatures greater than 
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600°C, making ideal for pre-combustion capture and is being investigated in this work 

[26, 27]. 

Researchers are also working on an amine-enriched sorbent [28]. Here the amine 

compounds are immobilized on a high surface area material, the amine then reacts with 

the CO2 to form a carbamate in a two-step process [11]. Microporous and mesoporous 

materials are also being researched and is discussed by Zelenak et al. [29] whose work 

studies the modification of these materials with amine to improve the efficiency and 

regeneration time. Zoelites, types of mesoporous and microporous materials,  are also 

being loaded with amine to produce novel adsorbents [23]. However, since these are 

synthetic materials the cost of preparation is high and a modified zeolite that would work 

at high temperatures is still being researched. 

Metal organic frameworks (MOFs) are also a new class of sorbents being 

researched. The hybrid material built from metal ions and organic compounds in 

geometrically organized structures [11]. MOFs require low energy for regeneration; they 

have good thermal stability; they are tolerant to contaminants and they are also low cost 

[11].  According to Millward et al. [30] MOFs offer the advantages of being totally 

reversible and flexible.  

Hydrotalcite sorbents are also being studied by researchers. Hydrotalcites are a 

class of clay, layers of double hydroxides [31, 32]. According to Iwan et al. [25] 

hydrotalcites showed the most promise in high temperature capture of CO2, possessing 

both a good adsorption capacity and rate.  
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2.4 Chemical-looping Combustion 

Chemical looping combustion uses a solid oxygen carrier to supply the oxygen 

needed for combustion. According to researchers at the University of Kentucky Center 

for Applied Energy Research, chemical looping provides two major advantages [33]: 

1. A high-purity CO2 stream, which would make separation more efficient 

2. The conversion efficiency would be greatly improved compared to that of 

using solvent for separation of the CO2 or oxy-combustion. 

Chemical looping combustion is in the early stages of process development. The 

major advantages of this technology is that air separation equipment is not required [11]. 

Research has to be focused on handling of multiple solid streams and the development of 

adequate oxygen carrier materials. Rubel et al. [33] discusses the oxidation/ reduction 

chemistry of several oxygen carriers and determined that iron oxide powder and catalyst 

showed the most promise.  

Researchers at Ohio State University are working on three novel chemical looping 

gasification processes: Syngas Chemical Looping(SCL), Coal Direct Chemical looping 

(CDCL) process, and Calcium Looping Process (CLP) [34]. The SCL process utilizes 

conventional coal gasification technology to produce a hydrogen stream for electricity 

production and a CO2 stream in two different reactors, which would lead to a system that 

does not require CO2 separation [34]. The CDCL process on the other hand does not 

produce a syngas, but uses coal as the feedstock. CDCL promises reductions in oxygen 

consumption and process intensification [34]. A resulting solid iron and ash stream is 

produced and a gas stream of CO2 and H2O, again requiring no separation of the CO2 

prior to sequestration. The last process CLP offers the same advantages as the SCL and 
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the CDCL, but can be installed on a conventional gasification system removing the need 

for syngas cleanup after the shift reaction. Ryden et al. [35, 36] and Chiesa et al. [11] 

discuss in detail chemical-looping combustion for natural gas with similar advantages.  

 

2.5 Oxyfuel Combustion 

In this technology pure oxygen is used for combustion instead of air and it is 

combined with a recycle flue gas stream [37]. This will produce a 70% CO2 rich flue gas 

that can be easily purified [37]. According to a literature review conducted by Buhre et 

al. [37] research work has shown that oxyfuel combustion is a viable option to producing 

a sequestration ready stream of CO2, but when compared to pre- and post-combustion 

capture technologies it depended on the combustion unit retrofitted and the systems on 

the unit. Buhre et al. [37] as discusses in the literature that unit availability and reliability 

of an oxy combustion unit was still in question as no full-scale plant has been 

demonstrated and built. In 2009, McCauley et al. [38] presented favorable results from 

the Babcock & Wilcox Company (B&W), through its Power Generation Group, and Air 

Liquide  oxy combustion demonstrations.  

Even though oxy combustion is a very favorable technology for CO2 

sequestration there are many issues that still need to be resolved operationally and this 

can be very costly option as an air separation unit will be needed to produce the pure 

oxygen required for combustion [11].  
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2.6 Cryogenic Separation 

Cryogenic separation is applied to CO2 capture by cooling and drying the flue gas 

to a temperature where solid CO2 is formed and can be separated [39]. Burt et al. [39] 

also points out that the capture efficiency is dependent on the expansion pressure and 

temperature. Research is still continues on cryogenic technology to reduce the amount of 

energy required to operate the systems [11]. The flue gas is cooled from 60°C to 

temperatures between -90 to -137°C, then the pressure is changed until the CO2 is below 

its triple point, where it exists as a solid [40]. Tuinier et al. [41] discusses cryogenic CO2 

capture using packed beds and the advantages of cryogenic technology are chemicals are 

not required and the disadvantage is that expensive water separation is required to moved 

all traces from the gas.   
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CHAPTER 3. CARBON DIOXIDE CAPTURE USING DOLOMITE 

 

3.1 Dolomite 

Dolomite is a metastable mineral material composed of calcium magnesium 

carbonate CaMg(CO3)2. Vast amounts of the mineral are found in geologic deposits in 

lakes, shallow seafloor, and other sites [42]. According to Warren [42] it can be formed 

in many ways: a primary precipitate, a diagenetic replacement, or a 

hydrothermal/metamorphic phase. Warren [42] also states that dolomite tend to be 

ferroan and its crystals are saddle-shaped. 

Goldsmith et al.[43] defines an ideal dolomite as one having a 1:1 molar 

CaCO3:MgCO3 ratio. However, the study showed that a number of natural dolomite 

samples were not ideal, as the CaCO3 content was in excess of the 1:1 molar ratio[43], 

the mole percent of the CaCO3 in the dolomite were discovered to be more along 55%. .   

 

3.2 Capture of CO2 with Carbonates 

In general, calcium-based oxides react with CO2 to form the metal carbonates. 

The carbonate can then be decomposed to form the metal oxide for continued capture of 

CO2. The main disadvantage of using calcium-based oxides is that they degrade rapidly 

[44]. Lee et al. [10] previously studied the calcium oxide in the use of CO2 capture by 

preparing a solid sorbent made of precipitated calcium carbonate impregnated unto a 

ceramic fabric as the starting material. Lee’s newly developed method for the preparation 
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of the sorbent showed a maximum conversion of approximately 55-59% [8]. The 

following are the reactions for CO2 capture using a metal oxide: 

Reaction for the carbonation of calcium oxide to calcium carbonate: 

CaO (s) + CO2 (g)   CaCO3 (s)      (3.1) 

Reaction for the calcination of calcium carbonate to calcium oxide: 

CaCO3 (s)  CaO (s) + CO2 (g)       (3.2) 

Lee [8] goes on to state, in his dissertation that degradation seen from his 

experimentation and the works of Barker and Borgwardt [45, 46] need to be addressed. 

Results from the literature review of calcium-based oxide for use in CO2 capture showed 

dolomite as being more promising than calcium carbonate [15, 47]. Hence, this research 

aimed to use Lee’s newly developed preparation of the calcium oxide sorbent and the 

results of the literature review to produce a dolomite sorbent that had the flexibility of 

Lee’s sorbent and an improvement to the degradation of the calcium carbonate sorbent. 

Dolomite and calcium carbonate are both abundantly available and naturally 

occurring resources, which reduces the material cost of CO2 capture,  if these products 

were utilized [48]. The literature states that if 50% conversion of calcium oxide takes 

place cyclically then 393 grams of CO2 per kilogram would have been captured [48].  

Senthoorselvan et al. [48] states that the temperatures at which calcium carbonate 

and dolomite undergo carbonation/calcination are applicable to power plant exit flue gas 

temperatures and well suited for CO2 capture. The sorbent has a maximum capacity that 

beyond which it degrades drastically, due to pore closures, and the inability of the CO2 

molecules to reach inner calcium oxide molecules. The decomposition of the magnesium 

carbonate molecules at 750°C is believed to leave micropores for the CO2 molecules to 
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penetrate into the material and reach calcium oxide molecules. This feature of dolomite 

was the main reason it was considered in this study.  

The decomposition of magnesium carbonate, at lower temperatures than calcium 

carbonate, impedes its ability to participate in the CO2 capture, but allows the magnesium 

molecules to stabilize the particle structure and create void space for the CO2 molecules 

to pass through [48].  The calcinations of calcium carbonate occurs at 750°C and 385°C 

for magnesium carbonate [15].  

According to Gupta et al. [15] the carbonation of calcium oxide goes through a 

two step mechanism, a rapid heterogeneous chemical reaction and a slower second step 

which involves the penetration of calcium carbonate layer formed [15]. The extent of 

conversion for calcium oxide, according to the literature, ranges anywhere from 30% to 

93% [15], while Lee’s sorbent showed conversion in the 62-75% range.  
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CHAPTER 4. SORBENT PREPARATION 

 
4.1 Sorbent Preparation 

Dolomite was immobilized on alumina fabric using the method described by Lee 

[10]. Dolocron 4512 (pulverized dolomite limestone) was selected as a starting material, 

as it was commercially available as a nano-powder. Precipitated calcium carbonate was 

added to the mixture to help the material to adhere to the fabric well. This acted as a 

surfactant and helped immobilize the dolomite to alumina.  

The general procedure for the preparation of the sorbent began by turning on the 

small furnace and setting the temperature to 700°C. The alumina fabric was then cut into 

strips. The alumina strips of fabric were placed in the furnace for 15 and 30 minutes 

respectively to remove any moisture, coating or binders. Fifteen milliliters (15mL) of 

ethyl alcohol was placed into a 50mL centrifugal tube. Half a gram (0.5g) of dolomite 

and 0.1g of precipitated calcium carbonate were added to the ethyl alcohol. The mixture 

was placed on a vortex for 3 minutes and then sonicated with a Sonic Dismembrator for 

10 minutes. The fabric was then removed from the furnace and weighed. The mixture of 

sorbent and ethyl alcohol was applied to one side of the fabric and dried at 150°C for 10 

minutes. The material was removed from the furnace and the solution of mineral and 

alcohol was applied to the uncoated side. The sorbent material was then placed in furnace 

at 800 °C for 12, 18, 55, 72 and 87 hours respectively. The sample was then weighed 

after sintering.  
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4.2 Calcination-Carbonation Cycling Experiments 

The sorbents were tested in a TGA to obtain data on the carbonation/calcinations 

cycles. All tests were performed under isothermal conditions at 750°C using 200ml/min 

CO2 in nitrogen during the carbonation cycle during the carbonation phase. Pure nitrogen 

was supplied to the TGA during the calcinations phase. The system was programmed to 

operate automatically with carbonation and calcinations running for 20 minutes each. The 

data was collected by the computer data logger and stored for future use. The software 

recorded the change in weight of the sample as CO2 was cyclically adsorbed and released 

in the TGA chamber. 

 
4.3 Material Characterization 

  The sorbent materials were characterized by x-ray diffraction 

analysis to confirm the material composition. The compound provided by Specialty 

Minerals used in this research is dolomite and sintering does remove the CO2 content of 

the dolomite leaving a compound made up of the oxides. 

 

 

 
 
 

 

  



www.manaraa.com

 

23 

 
 
 

 

 

CHAPTER 5. RESULTS AND DISCUSSION 

 

5.1 The Effect of Preparation Method on Capture 

The sorbent was first made with dolomite rocks purchased from Alfa Aesar (Ward 

Hill, MA). The rock had to be crushed and milled in the laboratory before it could be 

used. The crushed dolomite was then mixed with ethyl alcohol. The dolomite did not 

adhere to the fabric and fell off very easily. The conversion efficiency for the sorbent 

prepared by this method was very low (Figure 4). 

 

Figure 4. Conversion Cycles for Alfa Aesar Dolomite  
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The maximum conversion achieved with this method was 3.6% which means very 

little of the dolomite actually adhered to the alumina fabric. 

In a second approach, acetone replaced ethyl alcohol as the solvent to determine if 

changing the solvent would allow the dolomite to be impregnated unto the fabric. The 

results indicated that the solvent had no effect on the material preparation in this case. 

The same results were obtained in terms of the physical appearance with low attachment 

of the sorbent to the ceramic material. 

A search for a surfactant that would not affect or change the properties of the 

dolomite was undertaken. Fuller’s earth, a clay-like material, made up of mineral oxides 

was chosen because it would inertly bind the dolomite to the fabric [49]. Different 

weights for Fuller’s earth were used to make the sorbent and it was usually inspected to 

determine the stability of the sorbent. The initial method was modified by adding 0.25g 

of Fuller’s earth to 0.5g of dolomite with ethyl alcohol as the solvent. 

Since the preliminary data showed promise for the development of the dolomite 

sorbent, a new source of dolomite was found. Dolocron 4512 was supplied by Specialty 

Minerals (Allentown, PA), the same provider of the precipitated calcium carbonate used 

in Lee’s work [8]. Dolocron 4512 is a brand of dolomite powder that had a mesh size of 

325 (approximately 44 microns) and did not require further processing in the laboratory.  
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Figure 5. Conversion Cycles for Dolocron 4512 and Fuller’s Earth 
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used in his research. The sorbent was made using the materials and procedure from 

Section 3.2.  

The Dolocron-calcium carbonate sorbent was prepared adding 0.06g of the 

precipitated calcium carbonate. The graph below shows the conversion with respect to 

time for this sorbent preparation method. 

 

 

Figure 6. Dolocron 4512 and Precipitated Calcium Carbonate 

 
Figure 6 shows a maximum conversion of 53%, which indicated that the change 

from Fuller’s earth to the precipitated calcium carbonate was beneficial. The precipitated 

calcium carbonate made the Dolocron adhere even better than the Fuller’s earth and had 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 100 200 300 400 500 600

C
on

ve
rs

io
n

Time (mins)

Conversion vs Time



www.manaraa.com

 

27 

 
 
 

the positive effect of added calcium oxide sites for CO2 adsorption, instead of the inert 

Fuller’s earth.  

 

5.2 Effect of Conditioning Time on Capture 

The effect of conditioning time on conversion was studied. The results indicate 

that conditioning time has a significant effect on the conversion. Conversion increases 

with conditioning time (Figure 7). Longer conditioning times drive off more CO2 

increasing the potential of gas uptake during carbonation, which is clear from the data 

shown in Tables 2- 4 and Figure 7. 

 

Table 2. Conditioning Time of 12 Hours 

Weight Percent 

Conditioning 
Time 

(Hours) 
Stabilized 

Conversion 
Number of 

Cycles 
39% 12 29% 5 
77% 12 35% 12 
62% 12 38% 12 
84% 12 32% 9 

Average  34% 10 
 

Table 3. Conditioning Time of 18 Hours 

Weight Percent 

Conditioning 
Time 

(Hours) 
Stabilized 

Conversion 
Number of 

Cycles 
33% 18 40% 9 
33% 18 33% 12 
35% 18 32% 18 

Average  34% 11 
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Table 4. Conditioning Time of 55 Hours 

Weight Percent 

Conditioning 
Time 

(Hours) 
Stabilized 

Conversion 
Number of 

Cycles 
82% 55 36% 12 
37% 55 37% 21 
37% 55 40% 12 

Average  37% 15 
 

Table 5. Conditioning Time of 72 Hours 

Weight Percent 

Conditioning 
Time 

(Hours) 
Stabilized 

Conversion 
Number of 

Cycles 
32% 72 53% 20 
21% 72 64% 21 
 23%  72  51% 20 

Average  56% 20 

 

Table 6. Conditioning Time of 87 Hours 

Weight Percent 

Conditioning 
Time 

(Hours) 
Stabilized 

Conversion 
Number of 

Cycles 
24% 87 68% 8 
24% 87 63% 18 

Average  65% 13 
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Figure 7. Effect of Conditioning Time on Conversion 

 
The conversion at 87 hours of is double that at 12 hours (Figure 8 and  
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Figure 8. Dolomite Sorbent Conditioned for 12 Hours 
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Figure 9. Dolomite Sorbent Conditioned for 87 Hours 
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Figure 10. Dolocron 4512 and Precipitated Calcium Carbonate 
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Figure 11. Precipitated Calcium Carbonate 
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Table 7. Stabilized Conversion 

Weight Percent 

Conditioning 
Time 

(Hours) 
Stabilized 

Conversion 
Number of Cycles Stabilized 

Conversion Determined 
39% 12 29% 5 
77% 12 35% 12 
62% 12 38% 12 
84% 12 32% 9 
85% 18 32% 5 
33% 18 40% 9 
33% 18 33% 12 
35% 18 32% 18 

Average 15 34% 10 
 

 

Figure 13. Cyclic Carbonation/Calcination of Dolomite 
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stability of dolomite can be clearly seen from Figure 13. Although, the dolomite adsorbs 

less CO2 than the calcium carbonate sorbent it showed promise of being more stable, 

although longer cyclical experiments would be needed to be sure. 
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CHAPTER 6. CONCLUSION AND RECOMMENDATIONS 

 

6.1 Conclusion 

This aim of this research was to develop an inexpensive and efficient sorbent to 

capture CO2 and the design a reactor that uses the sorbent to capture CO2 emissions from 

power plants. The sorbent was developed using an earlier developed method to 

impregnate dolomite unto alumina fabric. This sorbent was successfully used to capture 

CO2. However, this research shows that the capacity of dolomite is about the same as 

calcium carbonate, although additional multi-cycle experiments are needed to draw a 

conclusion. 

This work was also able to quantify the capture conversion, the regeneration time, 

and cyclic performance of the sorbent, although for a small number of cycles. The 

dolomite sorbent effectively captured CO2 and its capture capacity degraded initially, but 

became stable at 34% after 10 cycles.  

Based on the experimental results in the cyclic reactions, the dolomite 

immobilized on the fibrous alumina fabric had continuous conversion in the 

carbonation/calcination cycles and was comparable to that of calcium carbonate.  
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6.2 Recommendations 

The dolomite sorbent showed continuous high reactivity in the cyclic 

carbonation/calcination cycle at 750°C, however further experimentation is required at 

different operating and conditioning times, CO2 flow rates, weights of dolomite 

immobilized on the alumina fabric, and different fabrics, for example yttria. With 

additional experimentation and data, reactor design can be completed.  
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